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Shattering of a brittle material such as glass occurs dynamically through a propagating
failure wave, which however, can not be assigned to any of the classical wave. In this paper,
we build a thermodynamically consistent theory based on the idea that a failure wave is
analogous to a deflagration wave. Our theory admits, as special cases, the classical models
of Feng and Clifton. Two fundamental thermodynamic functions form the basis of our theory.
This approach allows for the construction of a new variational principle and a Lagrangian
formulation. Finally, the theory is linearized to interpret specific experimental observations.
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1. Introduction

Fracture is one of the two main modes of material damage. Brittle fracture and comminuted
fracture waves (also called failure waves) are an extreme version of these phenomena, arising in
engineering applications such as modeling low-frequency earthquakes (Sapozhnikov et al., 2007),
armor damage prevention (Walley, 2013), determining the fracture strength of ceramics (Ccal-
lister and Rethwisch, 2011), and developing blast technology in underground mining (Zhang,
2016). Likewise, applications of brittle fracture arise in medicine: kidney stone treatment via
shock wave lithography (Neuberg et al., 2006), quantifying comminution in bone fracture (Be-
ardsley et al., 2005), and modeling tooth structure and function (Lee et al., 2011). It is known
that failure waves represent a dynamic wave mode of brittle elastic fracture that do not cor-
respond to any of the classical elastic or inelastic waves of solid mechanics. Behind the wave
front the material is in a comminuted or microfractured state (Bless and Brar, 2007; Feng et al.,
2000).

Our main result is the derivation of failure wave modeling from a consistent thermodynamic
framework based on a diffusive process. Our equations include the classic work of Feng et al.
(2000) and Clifton (1993) as special cases. We identify Clifton’s model as the zero dissipation
limit endpoint in a one parameter family of Feng models. Our analysis suggests that anisotropy
of diffusion (longitudinal vs transverse) is significant, which we argue is related to an observa-
ble quantity, the shard size of the comminuted rubble. Furthermore, we present a new data
analysis corresponding to the width and rise time of the failure wave. The thermodynamic fra-
mework results in a new formulation of a variational principle and the Lagrange equations with
dissipation.
The dynamic response of glass to impact has been investigated by researchers for many

years (see selected references (Feng et al., 2012; Bless and Brar, 2007; Kanel et al., 2005; Bourne
and Rosenberg, 1996). Experiments have conclusively demonstrated that once glass experiences
impact (e.g. uni-axial compression) close to, but below the Hugoniot elastic limit, the sample
initially deforms elastically at the shock front and subsequently fails dramatically through the
formation of multiple microcracks into a comminuted (rubblized) zone. This delay in time is
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interpreted as the result of a self-propagating failure wave moving at subsonic speed behind the
initial elastic shock. The material behind the failure wave suffers a total loss in tensile strength,
and a large reduction in shear strength, while little to no change occurs in the longitudinal
stress across the failure front. Researchers have used plate impact, rod impact and projectile
penetration experiments to investigate the properties of failure fronts in various types of glass.
Various models have been developed to describe the failure wave: its formation, the speed

at which the wave propagates, and the stability of the failure front. However, a consistent ther-
modynamic basis for the dynamics governing the failure wave is still lacking. Partom proposed
a simple phenomological model, which relates the rate of damage accumulation to the gradient
of damage (Partom, 1998). Kanel et al. (1991) also suggested a phenomological model where
the failure wave is a moving control surface and the shear strength behind this surface is set
to zero. A more fundamental model was proposed by Clifton (1993) who described the failure
wave as a propagating phase boundary within a system of conservation laws. All these models
do, in fact, provide multiple perspectives into the dynamics of the failure wave, and do agree, to
varying degrees, with experimental observations. Here we model the propagation of the failure
wave as analogous to a slow combustion process, a point of view presented by Feng (2000) and
later adopted by Chen et al. (2003) (in collaboration with Feng).
In 2000, R. Feng (Feng, 2000) proposed a physically based diffusive field equation to describe

the propagation of the failure wave. As he observed, since there is an increase in the lateral stress
associated with the arrival of the failure wave, while the longitudinal stress remains unchanged,
the propagation of a failure wave is not the result of momentum balance. Rather, it is the
progressive percolation of microfissures that drives the propagation of the failure wave; hence,
leading to a diffusive model. In fact, Feng observes that the propagation of the failure wave
resembles that of a (subsonic) deflagration wave. He, therefore, writes a field equation of parabolic
type for an unknown Vd

∂Vd
∂t
= ∇ · [D(x, t) · ∇Vd] + β(x, t) (1.1)

where t ∈ R
+ and x ∈ R

3 denote the time and space coordinates, and D and β are the second
order damage diffusivity tensor and evolution function, respectively. The variable Vd is a damage
related quantity: the increase in the specific volume of the material if it is damaged and then
completely unloaded. Feng’s model simulations were successful in reproducing the profile of the
lateral stress measurements for different glass specimens.
The main critique of Feng’s diffusive model is that field equation (1.1) is not derived from

a consistent thermodynamic formulation. In this work, we show that Feng’s equation can be
recovered in a theoretical derivation from thermodynamically consistent postulates.
The paper is organized as follows. In Section 2, we formulate the equations of motion and the

constitutive theory based on two functions: the (Helmholtz) free energy and the rate of entropy
production. This derivation is based on the principle of conservation of momentum, and the first
and second law of thermodynamics. This two-function approach is related to but distinct from
Biot’s derivation of the equations of classical thermoelasticity (Biot, 1956). Biot’s formulation
(Biot, 1956), which in contrast to our theory, depends on a modified (Biot’s) free energy, rather
than the thermodynamically correct free energy. In our context, all the dynamics and thermo-
dynamics of the system under study are contained in these two functions, and as such they
specify the equations of motion, which are of hyperbolic-parabolic type. The evolution-diffusion
equation are then linearized to obtain an anisotropic extension of Feng’s model. In this context,
we analyze the two distinct diffusion coefficients and compare our new theoretical predictions
for the width and time rise of the failure waves to experiment. Lastly, we show that in the ap-
propriate limit Feng’s model reduces to Clifton’s conservative model. In Section 3, we introduce
a thermodynamic potential as a sum of the Lagrangian and a dissipation function. The minimi-
zation of the sum leads to the equations of motion and constitutive relations. The equations of
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motion can thus be written as Lagrange’s equations with dissipation. In Section 4, we linearize
the equations of motion, thereby illustrating the two components of the dissipative Lagrangian
formalism and offering insight into the nature of the interaction of the reversible effects upon
the irreversible process in the system. As a consequence, we provide a theoretical explanation
for the disparity in the experimental values pertaining to the change in the longitudinal strain
across the failure wave as observed by Feng. Finally, Section 5 offers concluding remarks.

2. The equations of motion

We formulate the governing equations in Lagrangian coordinates as is customary in solid me-
chanics. See (Gurtin et al., 2010; Marsden and Hughes, 1994) for more details. Let the body
B0 ⊂ R

n denote the undeformed reference configuration. A point X ∈ B0 is called a Lagrangian
or material point. We represent the coordinates on B0 by {Xi}, i = 1, 2, . . . , n. Furthermore, by
defining a time-dependent diffeomorphism φ : B0 × R

+ → Bt ⊂ R
n to be a motion of B0, we

can represent an Eulerian or spatial point occupied by X at time t by x = φ(X, t), and so we
have X = φ(X, 0).
Define the displacement vector U = U(X, t) in Lagrangian coordinates by

U(X, t) = x−X Ui(X, t) = xi −Xi i = 1, 2, . . . , n

where x = φ(X, t).
Moreover, define the deformation gradient F = ∂x/∂X, and so

F = I+∇U Fij = δij + Ui,j i, j = 1, 2, . . . , n (2.1)

2.1. Constitutive theory

In this Section, we develop the thermodynamics of elasticity coupled to diffusive internal
variables based on the work of Biot (1956), Maugin (1990) and Ziegler (2012). The derivation
is based on the determining two fundamental thermodynamic functions. Such a two function
approach was first proposed by Biot to obtain the equations of thermoelasticity (Biot, 1956).
Biot observed that by minimizing the sum of two quantities – a modified free energy (someti-
mes referred to as Biot’s potential) and the dissipation function – he was able to produce the
classical equations of thermoelasticity. However, the relation of Biot’s thermoelastic potential to
fundamental thermodynamic principles is not clear.
For isothermal processes such as the one we are studying, the Helmholtz free energy is the

appropriate fundamental thermodynamic potential representing the thermodynamic state of the
system (Lebon et al., 2008), and minimizing the free energy produces the balance of forces for
isothermal processes (Fung and Tong, 2001). Moreover, in the case of failure waves, there is
entropy production associated with the irreversible process of the growth and propagation of
microcracks into the material (Maugin, 1990). In fact, as we will show, the rate of entropy
production is proportional to the dissipation function. Therefore, the Helmholtz free energy
and the dissipation function constitute the basis of our two-function approach. A more general
treatment of this approach can be found in (Ziegler, 2012). We rely on Internal Variable Theory
and classical theory of irreversible thermodynamics to construct our two functions.
Internal Variable Theory (IVT) has many applications including the description of elasto-

-plastic fracture and modeling viscoelastic behavior (Ziegler, 2012; Murakami, 2012). The diala-
ted volume Vd in Feng’s model can be interpreted as an internal variable. We adopt this approach
and introduce an internal variable Γ. We assert that the propagation of the failure wave is repre-
sented by an evolution-diffusion equation for the internal variable Γ. The tensorial nature of Γ
and its interpretation as it pertains to the failure wave phenomenon will be discussed below. In
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keeping with our analogy to thermoelasticity and combustion theory, the diffusion of Γ can be
viewed in some respects as analogous to the diffusion of heat in a body as briefly mentioned by
Chen et al. (2003).
We first begin by considering the specific Helmholtz free energy denoted Ψ , and assume the

system to be at constant temperature Θ0.
In the theory of thermoelasticity, the Helmholtz free energy Ψ is a function of the deformation

gradient F and temperature Θ such that (Guertn et al., 2010)

S = ρ0
∂Ψ

∂F
s = −

∂Ψ

∂Θ

where S is the first Piola-Kirchhoff stress tensor, s is the entropy, and ρ0 is the mass density of
the undeformed material.
In our context we assume that Ψ depends on F and Γ with

S = ρ0
∂Ψ

∂F
(2.2)

Note that

Sij = ρ0
∂Ψ

∂Uk,l

∂Uk,l
∂Fij

= ρ0
∂Ψ

∂Uk,l

∂Fkl
∂Fij

= ρ0
∂Ψ

∂Ui,j
= ρ0

∂Ψ

∂(∇U)

Before examining the associated variable to Γ, we make the following two key assumptions:
(i) the Helmholtz free energy Ψ not only depends on F (or equivalently on ∇U) and the internal
variable Γ, but also on the gradient of the internal variable ∇Γ as done by Maugin (1990),
(ii) function Ψ is convex in ∇Γ and Γ. We motivate these assumptions below. For now, we can
write symbolically

Ψ = Ψ(∇U,Γ,∇Γ) (2.3)

Free energy functions that depend on the gradient of the internal variable have been used extensi-
vely in non-local damage models (Nedjar, 2002; Liebe, 2001). For instance, Nedjar (2002) utilizes
essentially the same free energy as in equation (2.3) for a scalar damage variable. However, the
main difference with our present work lies in the definition of the dissipation function. The dis-
sipation function we employ is a direct result of Onsager’s principle; however, Nedjar postulates
the existence of a pseudo-potential of damage dissipation. But the relation of this potential to
entropy production is not clear. Furthermore, while the thermodynamic framework outlined in
(Nedjar, 2002) can allow for rate-dependent material damage, the quasi-static problem was only
considered in detail, as opposed to the dynamic problem in this work.
Consider the time derivative of Ψ

ρ0Ψ̇ = S :
˙∇U− ZΓ̇−∇ · (BΓ̇) (2.4)

where we have defined

Z = −ρ0
δΨ

δΓ
= A−∇ ·B A = −ρ0

∂Ψ

∂Γ
B = −ρ0

∂Ψ

∂(∇Γ)
(2.5)

We consider Z to be the associated variable to Γ. The variable Z is interpreted as an internal
force corresponding to the internal variable Γ (Maugin, 1990).
The second law of thermodynamics (or equivalently the Clausius-Duhem inequality) deter-

mines physically permissible processes. In Lagrangian coordinates, it reads (Fung and Tong,
2001)

d

dt

∫

Ω

ρ0s dΩ +

∫

∂Ω

Σ̇ da  0 (2.6)
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where s is the entropy (per unit mass) of the system, Ω is the domain of the system, and Σ̇ is
the entropy flow vector on the boundary. As the problem is isothermal, the only relevant entropy
is that associated with Γ. Locally, (2.6) simplifies to

ρ0ṡ+∇ · Σ̇  0 (2.7)

By substituting Ψ = E − sΘ0 (E being the internal energy of the system), and the balance of
energy equation: ρ0Ė = S : Ḟ into the above equation, and taking into consideration equations
(2.5) we obtain

ZΓ̇+∇ · (BΓ̇+Θ0Σ̇)  0 (2.8)

By making the choice

Σ̇ = −
BΓ̇

Θ0
(2.9)

we arrive at the fundamental inequality

ZΓ̇  0 (2.10)

In general, diffusion can be expressed in terms of a flux h across the boundary. For instance,
in thermomechanics, h is given by Fourier’s law, which in turn gives rise to an entropy flux Σ̇
defined as Σ̇ = h/Θ.

In the context of our problem, there is no heat exchange at the boundary. So the diffusion
of the internal variable is associated with a flux other than the heat flux across the boundary.
Equation (2.9) gives an explicit expression for this flux: it is the entropy flux associated with
the internal variable Γ. Therefore, by analogy to heat flow across the boundary, we obtain an
explicit expression for the total rate of energy released from the surface of the material during
the propagation of the failure wave

H =

∫

∂Ω

h · n da =

∫

∂Ω

BΓ̇ · n da (2.11)

where n is the unit outer normal. Note it was by assuming Ψ = Ψ(· · · ,∇Γ) that we got B 6= 0,
which gives a nonzero entropy flux Σ̇.

Had we only assumed Ψ = Ψ(∇U,Γ), then we would expect Σ̇ = 0 and an equation similar
to (2.10) would still hold (by replacing Z with A) (Ziegler 2012; Lebon, 2008). Thus, there still
could be dissipation in the medium, but not diffusion of the internal variable.

Next we consider the dissipation function. It is known that the Helmholtz free energy deter-
mines the reversible processes occurring in the system. If in addition to reversible processes, the
evolution of the system under consideration produces entropy (i.e. an accompanied irreversible
process), then one needs to supplement the free energy with a scalar dissipation function D.
This approach has been used in thermomechanics by Ziegler (2012) and Biot (1955, 1956), and
in a more general context by Maugin1 (1992).

The constitutive law for the dissipation function D varies according to the system under
study. In applications, the function D is positive and depends on the rate variables, as well as
on the thermodynamic state variables (Ziegler, 2012). As a postulate, we exclude the viscous

1In fact the dissipation function was first introduced by Rayleigh (1945) in his study of dissipative
processes in classical mechanics. He required such a function to be non-negative and quadratic in the
velocities.
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related strain rate ˙∇U from D. Moreover, as the system is isothermal, the only remaining rate
variable is Γ̇, and so we write

D = D(Γ̇, w) (2.12)

where w represents the state variables.

Before investigating the functional form ofD in the case of failure waves, we need to determine
the forces associated with Γ̇. Following Ziegler (2012) and Maugin (1990), we assume that the
function D is such that

∂D

∂Γ̇
+
δΨ

δΓ
= 0 (2.13)

or equivalently

ρ0
∂D

∂Γ̇
= Z (2.14)

In other words, the dissipative force associated with Γ̇ through D is identified as the opposite
of the quasiconservative force associated with Γ through Ψ2.

For failure waves, we assume the dependence of D on w in (2.12) vanishes, and furthermore,
we assume a quadratic dependence of Γ̇ similar to the thermoelastic theory of Biot (1956)

ρ0D = ρ0D(Γ̇) =
1

2
Λ · (Γ̇ · Γ̇)  0 (2.15)

For example, if Γ is an n-vector, then the above equation in component form reads

ρ0D(Γ̇) =
1

2
ΛijΓ̇iΓ̇j  0 i, j = 1, 2, . . . , n (2.16)

The classical theory of irreversible thermodynamics relates the function D to the rate of
production on internal entropy ṡ(i). Onsager’s principle defines ṡ(i) in terms of fluxes and forces
associated to the fluxes. In the absence of thermal effects, the flux and force are identified with
Γ̇ and Z, respectively. So we write (Fung and Tong, 2001)

ρ0Θ0ṡ
(i) = Γ̇ · Z  0 (2.17)

If the fluxes and forces are related by a linear phenomenological relation

Z = Λ · Γ̇ (2.18)

then,

ρ0ṡ
(i) =

1

Θ0
Γ̇ · Z =

1

Θ0
Λ · Γ̇ · Γ̇ =

2ρ0
Θ0
D (2.19)

where by Onsager reciprocal relations we have Λ = ΛT. Furthermore, we assume Λ is invertible.
So not only does the dissipation produce entropy, the rate of entropy production is in fact pro-
portional to the dissipation function. Hence, we can treat D as the source of entropy production.
A more general treatment of dissipation functions can be found in (Ziegler, 2012; Gurtin et al.,
2010).

2According to, Ziegler this is a statement that the net internal forces associated to the internal variables
in an arbitrary process is equal to zero, which is a consequence of energy conservation.
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Expanding equation (2.13) gives us

ρ0
∂D

∂Γ̇
+
∂Ψ

∂Γ
−
( ∂P

∂(∇U)
· ∇X(∇U) +

∂P

∂Γ
· ∇XΓ+

∂P

∂(∇Γ)
· ∇X(∇Γ)

)

= 0 (2.20)

where P = −(1/ρ0)B and symbol ∇X means derivative with respect to X while holding other
variables constant. Moreover, we define the damage diffusion tensor K as

1

ρ0
K =

∂P

∂(∇Γ)
=

∂2Ψ

∂(∇Γ)∂(∇Γ)
(2.21)

Tensor K is defined analogously to the classical elasticity tensor, and hence it is symmetric.
Furthermore, since Ψ is convex in ∇Γ tensor K must be positive definite, thereby ensuring
well-defined diffusion.

Before we formulate the hyperbolic-parabolic equations, we discuss the order and nature of
the variable Γ. In general, the order and physical meaning of an internal variable depends on
the system under study. In the classical theory of material damage, a scalar variable d ∈ [0, 1]
called a damage variable is introduced such that d = 0 corresponds to intact material, and d = 1
corresponds to fully fractured material (Maugin, 1992). However, in the context of our problem,
the incident shock wave introduces lateral shear in the brittle material because of Poisson’s ratio,
which is released by the arrival of the failure wave as a drop in shear strength. It is reasonable
then to assume that the difference in shear stress is driving the damage from a mechanical
point of view. So it is natural to introduce a second order tensor to describe the diffusion of the
damage Γ. Variable Γ represents the strain due to the 3D anisotropic fracture and microcracks.
The associated force (in this case a measure of shear stress) is given by the first equation of
(2.5).

For notational simplicity, we rewrite the symmetric rank two indices i, j of Γ as a single
index i = 1, . . . , [n(n+ 1)]/2. This choice yields a rank four tensor K and rank two tensor Λ.

2.2. Coupled hyperbolic-parabolic equations

We are now in position to write down the system of partial differential equations of hyperbolic-
-parabolic type describing the formation and propagation of failure waves

ρ0
∂2U

∂t2
−∇ · S

∣

∣

∣

Γ=0
= ρ0r

∂D

∂Γ̇
+
δΨ

δΓ
= 0 (2.22)

where r(X, t) is a (specific) body force. Equation (2.22)1 describes the motion of the initial
nonlinear shock, hence we have a vanishing Γ.

By using the constitutive equations for functions Ψ and D, particularly equations (2.2),
(2.16), and (2.21), the coupled system3 (2.22) can be rewritten as

ρ0
∂2Ui
∂t2
− Cijkl

∂2Uk
∂Xj∂Xl

= ρ0ri

Λi′k′
∂Γk′

∂t
−

∂

∂Xj

(

Ki′jk′l
∂Γk′

∂Xl

)

= fi′(Um,n, Γm′ , Γm′,n)

(2.23)

where C|Γ=0 = C(∇U,Γ = 0) = C(∇U) is the elasticity tensor, f is a nonlinear function in its
arguments, and tensor K depends on the state vairables ∇U, Γ, ∇Γ. In the above equations,

3Strictly speaking there is one-way coupling only: the parabolic part is coupled with the hyperbolic
equation since the hyperbolic part is independent of variable Γ.
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’prime’ indices range from 1 to n(n+1)/2 while the rest range from 1 to n. In component form,
the elasticity tensor is given to be

Cijkl =
∂Sij
∂Uk,l

∣

∣

∣

∣

Γ=0

= ρ0
∂2Ψ

∂Ui,j∂Uk,l

∣

∣

∣

∣

Γ=0

Hence, we have obtained a nonlinear coupled hyperbolic-parabolic system of PDEs. It should
be realized that diffusion will be inactive (i.e. each term in equation (2.23)2 is identically zero)
if the stress due to initial impact does not overcome a certain threshold σ0.
System (2.23) is constrained by entropy inequality (2.10)

ZΓ̇  0

which only allows for physically admissible solutions.
The initial and boundary conditions that must accompany the system of equations (2.23)

are given to be

U(X, 0) = U0(X) Ut(X, 0) = U
1(X) Γ(X, 0) = Γ0(X) X ∈ B0 (2.24)

and

U
∣

∣

∣

x∈∂B0
= h1 Γ

∣

∣

∣

x∈∂B0
= h2 ∀t > 0 (2.25)

where the functions U0(X), U1(X), Γ0(X), h1, h2 are all given. The dynamics (2.23) of the
problem is completely determined by the two functions: Ψ and D.
For the full 3D problem, the internal variable Γ has 6 independent components, ∇Γ has 6×3

components, and hence the rank 4 symmetric tensorK has (19×18)/2 independent components.
We obtain a simple non-isotropic model for diffusion if we assume that the material under study
is isotropic, and consider a 1D shock wave in the longitudinal direction X

.
= X1; in such a

case the two lateral directions mirror one another. In addition, if we take a scalar variable Γ
to represent the damage, as done by Feng, then the matrix K reduces to a 3 × 3 matrix and
the matrix Λ reduces to a scalar, which we denote λ. Finally, we assume that the matrix K is
diagonalized in the longitudinal direction X and the two transverse components.

2.3. Feng’s model

By the considerations given in the preceding paragraph, we have U2 = U3 = 0, and the
unknown variables are written as U1

.
= U = U(X, t) and Γ = Γ (X, t). We obtain Feng’s

diffusive field equation as follows. We retain the definition of D and expand (2.3) to second
order around the natural undamaged state (i.e. ∇U = Γ = ∇Γ = 0). In this state, the forces
associated with state variables (i.e. equations (2.2) and (2.5)) vanish, and we assume that no
coupling exists between the state variables. Thus the free energy and dissipation function are
written as

ρ0ΨF =
c1
2
U2X +

c2
2
Γ 2 +

1

2
Kij∇iΓ∇jΓ +

c3
4
U4X ρ0DF =

1

2
λΓ̇ 2 (2.26)

where the constant c1 is the 1D linear elastic coefficient (e.g. Young’s modulus) and the con-
stant c3 specifies the nonlinear elastic properties. An expression for scalar c2 = c2(X, t)  0 is
given by Feng (2000) depending on the principle eigenvalue of K (see also Chen et al., 2003).
Furthermore, we allow K to depend on the variables X and t.
With these specifications, equation (2.23)2 gives

λ
∂Γ

∂t
−

∂

∂Xj

(

Kij
∂Γ

∂Xi

)

= −c2Γ (2.27)
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For a nonzero λ, (2.27) can be written as

∂Γ

∂t
−

∂

∂Xj

(

Dij
∂Γ

∂Xi

)

= c4Γ (2.28)

where c4 = −c2/λ and Dij = (1/λ)Kij

D =

[

d1 0
0 d2

]

=

[

k1
λ
0

0 k2
λ

]

(2.29)

where the coefficients d2 and k2 are multiples of the identity matrix I2×2.
According to Feng, d1 determines the speed of the failure wave. We claim that d2 determines

the shard size in the damaged material. First, however, we discuss the evolution of d1 and d2
during the failure process.
In 2D projectile impact experiments in which a failure wave propagates as a spherical wave

outwards, it is known (Wei and Samulyak, 2014) that after the abrupt cessation of the failure
front isolated radial cracks start to form moving away from the impact point. We speculate that
similar phenomena for a planar shock impact should occur parametrically as the shock impact
is varied, with a transition from a failure wave to isolated cracks occurring at the critical shock
strength. To explain such behavior, we must have that during the propagation of the failure
wave, the speed of diffusion associated with d2, denoted vl (defined analoguosly to (2.30)), is
larger than the crack trip velocity v0. As the failure wave propagates away from the impact
point speed vl decreases until vl = v0 at which point the failure process stops, and the cracks
”escape” the percolation in the lateral direction and as, a result, isolated radial cracks begin.
Chen et al. (2003) observe that in order to obtain a planar failure wave in a uniaxially

compressed material: “percolation of microdamage [is] much faster in all the lateral (transverse)
directions than in the longitudinal direction...” (see Fig. 1). Hence, in terms of the diffusion
coefficients we must have d2 > d1 before the cessation of the failure wave. Chen et al. (2003),
however, model only the isotropic case by assuming d1 = d2, and they express d1 in terms of a
measure of shear stress. The point here is that according to their model the speed of the failure
wave is governed only by d1.
In diffusion-driven processes such as combustion, the speed of propagation is determined by

the reaction rate or, the equivalently reaction time, and the diffusion coefficient (Clavin and
Searby, 2016)

vf ≃
√

d1ω̇ or equivalently vf ≃

√

d1
τ

(2.30)

where ω̇ and τ are the reaction rate and reaction time, respectively. By identifying vf with the
speed of the failure wave obtained by experiments, we can calculate the reaction time. Moreover,
once vf is specified we are able to specify the width of the wave δ1 through

δ1
.
=
d1
vf

(2.31)

As a new analysis of existing experiments, we compare our theoretical predictions for the values of
τ and δ1 for K8 glass and soda lime glass with the experiments examined by Feng. Experimental
data are taken from plots of (Feng, 2000). We have interpreted τ as the time rise in the lateral
stress to find the experimental value of δ1.
Finally, we assert that the second eigenvalue d2 of tensor Dij determines the fineness of

fracture in the failed brittle material. If we define a measure of length δ2 in the following way

δ2
.
=
d2
vf
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Fig. 1. A schematic figure illustrating the percolation of microcracks in an elastically compressed brittle
material: (a) initial compression due to the incident shock wave; at t0 we have Γ = 0; (b) at a later
time t1 microcracks begin to appear; the damage field Γ 6= 0; (c) at t2 > t1 failure propagates into the
material due to microcrack nucleation shown here schematically as perpendicular to the incident shock;
percolation in X2-direction is faster than in X1-direction. The dashed line represents the failure front

Table 1. Comparison of model prediction with experimental data for K8 glass with
vf = 3320m/s, d1 = 6.6m

2/s. Gauge positioned at 4.5× 10−3m from the loading surface

τ [s] δ1 [m]

Experimental value 0.75 · 10−6 2.49 · 10−3

Theoretical prediction 0.6 · 10−6 2 · 10−3

Table 2. Comparison of model prediction with experimental data for soda lime glass with
vf = 3090m/s, d1 = 7.4m

2/s. Gauge positioned at 3.3 · 10−3m from the loading surface

τ [s] δ1 [m]

Experimental value 0.9 · 10−6 2.8 · 10−3

Theoretical prediction 0.8 · 10−6 2.4 · 10−3

then scalar δ2 gives an estimate for the fineness of fracture. Although, to the extent of our
knowledge, there are not any experimental measurements available for the shard size, it can be
measured in principle via impact experiments.

2.4. Clifton’s model

The theory of deflagration can be formulated as a strictly hyperbolic system as found in
(Courant and Friedrichs, 1999; Chorin and Marsden, 1990). However, if diffusion and finite
reaction rates are considered, then combustion is obtained in the sense given by Zeldovich: a
coupled hyperbolic-parabolic system of PDEs (Clavin and Searby, 2016; Bebernes and Eberly,
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2013). In the latter formulation of the theory, the flame propagates with finite width and the
flame speed depends on the diffusion coefficient and the reaction rate. In the absence of heat
transfer and assuming an infinite reaction rate leading to a sharp flame front, Zeldovich’s theory
reduces to the hyperbolic system. This same sharp front limit can be achieved with zero viscous
and thermal dissipations (Maugin, 1992; Courant and Friedrichs, 1999). We show that in this
zero dissipation limit for the propagation of the failure wave, Feng’s model reduces to Clifton’s
conservative model.
Clifton (1993) models the failure wave as a propagating phase boundary, which he calls

a transformation shock. According to Clifton, the phase change occurs across a sharp front.
Across the phase boundary, he imposes Rankine-Hugoniot conditions for the usual isentropic
conservation laws in one space dimension, and derives an expression for the speed of the front.
The task that lies before us, therefore, is to find the conditions under which the theory in
Section 2.2 reduces to the conservation laws proposed by Clifton.
Dissipation effects due to entropy production vanish for conservative systems, hence by taking

Λ→ 0, we obtain D = 0 in equation (2.16) – assuming Γ̇ is bounded on B0. Moreover, since the
entropy flux across the boundary Σ̇ must also vanish, we conclude

B = −ρ0
∂Ψ

∂∇Γ
= 0

which implies K = 0, and

∂s

∂t
=
∂s(i)

∂t
= 0 (2.32)

Furthermore, by assuming the nonhomogenous term f to be identically zero, equation (2.23)2
trivially vanishes. We claim that equations (2.23)1 and (2.32), produce the 1D conservation laws
considered by Clifton.
It is sufficient to show that (2.32) is equivalent to the law of conservation of energy (Dafermos,

2005)

∂

∂t
ρ0
(

E +
1

2
v2
)

−
∂

∂X
(vS) = 0 (2.33)

where we have defined E as the internal energy, S is the scalar valued Piola-Kirchhoff stress,
and v = ∂U/∂t.
Gibbs equation with an internal variable reads (Lebon et al., 2008)

dE = Θ0ds+
1

ρ0
SdUX −AdΓ

with A = −ρ0∂Ψ/∂Γ in (2.5). However, by (2.14) we have A = 0. Thus, Gibbs equation reduces
to

dE = Θ0ds+
1

ρ0
SdUX (2.34)

Assuming E = E(s, UX) combined with (2.34) we obtain

∂E

∂t
= Θ0

∂s

∂t
+
1

ρ0
S
∂UX
∂t
= Θ0

∂s

∂t
+
1

ρ0
S
∂v

∂X

Therefore

∂

∂t
ρ0
(

E +
1

2
v2
)

= ρ0
∂E

∂t
+ ρ0v

∂v

∂t
= ρ0Θ0

∂s

∂t
+ S

∂v

∂X
+ v

∂S

∂X
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where we have used the balance of momentum equation ρ0∂v/∂t = ∂S/∂X. By substituting for
(2.32), we obtain the conservation of energy equation (2.33).
We have established the classical conservation laws

∂UX
∂t
−

∂v

∂X
= 0 ρ0

∂v

∂t
−
∂S

∂X
= 0 ρ0

∂

∂t

(

E +
1

2
v2
)

−
∂

∂X
(vS) = 0 (2.35)

In one space dimension, if we choose Γ = Vd and write Feng’s equation in form (2.27), then
the limit λ→ 0 implies DF = 0 and equation (2.32) is satisfied. Moreover, we assume that the
nonhomogeneous term is zero (i.e. c2 = 0) as postulated earlier; then by the above argument,
we obtain system (2.35) and, hence, Feng’s model reduces to the Clifton model.
Field equations (2.35) satisfy the Rankine-Hugoniot jump relations, which is the starting

point considered by Clifton for modeling failure waves. We have, therefore, demonstrated that
Clifton’s model can be recovered from Feng’s model in the limit Λ → 0. In this limit, the
entropy is constant and, therefore, entropy production associated with the irreversible process
of the growth of microcracks is zero over time, making Clifton’s model an idealization of the
process of the propagation of failure waves.

3. Variational principle and Lagrangian formalism

In this section we formulate a a novel variational principle which produces equations (2.23). We
show that minimizing the sum of the Lagrangian function and the dissipation function leads to
the equations of motion. Furthermore, we demonstrate that system (2.23) can be rewritten as
Lagrnage’s equations with dissipation similar to dissipative systems in classical mechanics.
We start with a simplified variational principle where all surface and boundary terms va-

nish. While this is only a special case, the main physical and mathematical insights still hold.
Appendix A presents the complete variational principle that includes all boundary terms, and
is formulated in terms of generalized coordinates.
For the body B0, define the total (Helmholtz) free energy ψ, the total kinetic energy K , and

the total dissipative function D

ψ =

∫

B0

ρ0Ψ dV K =
1

2

∫

B0

ρ0
∂Ui
∂t

∂Ui
∂t

dV D =
1

2

∫

B0

ΛijΓ̇iΓ̇jdV

Furthermore, we define the Lagrangian L

L = ψ −K = L (∇U, U̇,Γ,∇Γ) =

∫

B0

L dV

With the above definitions, the variational principle for the equations of motion is

δI = δ

t2
∫

t1

(L +D) dt = 0 (3.1)

where t1 and t2 represent fixed instants of time. The variation is taken with respect to the
displacement U and the internal variable Γ.
We demonstrate that variational principle (3.1) produces the system of equations (2.23).
We define the variation of the dissipation function δD in a similar fashion to Biot

δD =

∫

B0

Λij Γ̇iδΓj dV (3.2)
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The justification of equation (3.2) becomes evident when we introduce generalized coordinates,
as done in Appendix A.
Thus,

t2
∫

t1

(δD + δψ) dt−
1

2

t2
∫

t1

δ

∫

B0

ρ0
∂Ui
∂t

∂Ui
∂t

dV dt = 0

t2
∫

t1

{

δD +

∫

B0

ρ0
( δΨ

δUi
δUi +

δΨ

δΓi
δΓi
)

dV
}

dt−

t2
∫

t1

∫

B0

ρ0
∂Ui
∂t

∂(δUi)

∂t
dV dt = 0

t2
∫

t1

{

δD +

∫

B0

ρ0
[

−∇j ·
( ∂Ψ

∂Ui,j

)

δUi +
δΨ

δΓi
δΓi
]

dV
}

dt+

t2
∫

t1

∫

B0

ρ0
∂2Ui
∂t2

δUi dV dt = 0

t2
∫

t1

{

∫

B0

(

−∇ · S+ ρ0
∂2U

∂t2

)

δU dV +

∫

B0

(

Λ · Γ̇+ ρ0
δΨ

δΓ

)

δΓ dV
}

dt = 0

Since the last equation holds for all variations δU and δΓ, we are left with the desired system
of equations (2.23) with r = 0.
Therefore, the associated Lagrange equations to variational principle (3.1), which is equiva-

lent to the governing system of PDEs (2.23), is written as

δL

δηi
−
d

dt

(∂L

∂η̇i

)

+
∂D

∂η̇i
= 0 (3.3)

where we have defined the vector variable η = (U,Γ). Notice that the form of equation (3.3)
is identical to the form of Lagrange’s equations of motion in classical mechanics for dissipative
systems (Goldstein, 1965).
There exist dissipative Hamiltonian and bracket formulations corresponding to the above

dissipative Lagrangian system. The construction of said formalisms can be found in the thesis
of the first author.

4. Linear theory

In this Section, we linearize equations (2.23) and note the interaction of the reversible effects
upon the irreversible process of material failure.
We begin by requiring that the free energy Ψ be a quadratic form in ∇U and Γ and quadratic

in ∇Γ as follows

ρ0Ψ =
1

2
C · (∇U · ∇U) + b · (∇U · Γ) +

1

2
c · (Γ · Γ) +

1

2
K · (∇Γ · ∇Γ) (4.1)

where C is the (linear) elasticity tensor, b are the constant coupling reversible effects to the
irreversible ones, and c is a dissipative constant. Clearly, the four coefficients in equation (4.1) are
given in terms of Taylor’s formula. Moreover, we retain the definition of the quadratic dissipation
function D as given in (2.16). We notice that by adding a nonlinear quartic term in ∇U and
setting b = 0, we obtain the free energy for Feng’s model in three dimensions (compare with
(2.26)).
With the above identifications, we substitute the Lagrangian function

L =

∫

B0

ρ0
(

Ψ −
1

2

∂Ui
∂t

∂Ui
∂t

)

dV
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and dissipation function D into equations of motion (3.3) to obtain

ρ0
∂2U

∂t2
−∇ · (C · ∇U) = 0

Λ
∂Γ

∂t
−∇ · (K∇Γ) + b∇U+ cΓ = 0

(4.2)

where we have evaluated ρ0∂Ψ/[∂(∇U)] at Γ = 0 in equation (4.2)1. In the above linear system
of PDEs, we have obtained a linear diffusion equation coupled to a linear wave equation.

We notice that for a nonzero b, equation (4.2)2 picks up the reversible contribution b∇U,
as observed. Hence, for b = 0, equation (4.2)2 is purely dissipative with no additional elastic
effects, which is precisely what Chen et al. (2003) consider in their model: “The failure wave
behind the shock wave front will not cause additional strain at the macroscopic level under the
plate impact conditions...”.

The constant tensor b, therefore, measures the coupling of the irreversible effects to the
reversible effects. One expects that in an ideal situation, the constant b should be set to zero, but
due to varying material properties and/or different experimental configurations, residual elastic
effects in the dissipative process may appear as a result, hence a non-zero b. This observation
explains the inconsistencies in the data observed by Feng as they pertain to the rise in the
longitudinal strains behind the failure wave (Feng, 2000).

5. Conclusions

We have formulated a theory describing failure waves in a brittle elastic material at a continuum
level based on a thermodynamically consistent theory. We have subsumed and extended in our
analysis a prior model proposed by Feng for brittle fracture, and we have recovered Clifton’s
model in the dissipationless limit. Our analysis reveals the importance of the coefficient of lateral
diffusion d2 in determining both the shard size and the transition from failure waves to isolated
cracks. In this work, we have combined and modified several methodologies previously developed
in the context of thermoelascticty, IVT, and irreversible thermodynamics.

In summary, we developed a constitutive theory and the equations of motion in the context
of two fundamental thermodynamic functions: the (Helmholtz) free energy Ψ and a dissipa-
tion function D. Feng’s model is recovered by specific choices of the potentials Ψ = ΨF and
D = DF defining the constitutive theory. Clifton’s model, in turn, can be recovered from Feng’s
by taking the limit Λ→ 0. Our two-function approach gives rise to a variational principle and a
Lagrangian formalism. Finally, we presented a linear theory to gain insight into the interaction
of the reversible and irreversible processes, and discussed its experimental manifestation.

A. Appendix

In this appendix, we derive Lagrange’s equations (3.3) in generalized coordinates from a variatio-
nal principle that includes boundary terms. We adapt Biot’s method (Biot, 1970) for formulating
a variational principle for thermoelasticity to our problem.

We begin by stating the complete variational principle

δ

t2
∫

t1

(ψ −K +D) dt =

t2
∫

t1

R dt (A.1)
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where

R =

∫

∂B0

(SijnjδUi −BijnjδΓi) dA+

∫

B0

ρ0riδUi dV

We start by expressing the unknown vectors U and Γ in terms of k generalized coordinates
q = (q1, . . . , qk). We write

U = U(q1, . . . , qk,X, t) Γ = Γ(q1, . . . , qk,X, t) (A.2)

The variations of variables U and Γ are given in terms of variation δq

δUi =
∂Ui
∂qj

δqj δΓi =
∂Γi
∂qj

δqj (A.3)

First, we look at
∫

B0
Λij Γ̇iδΓj dV

∫

B0

ΛijΓ̇iδΓj dV =

∫

B0

Λij Γ̇i
∂Γj
∂qm

δqm dV =

∫

B0

Λij Γ̇i
∂Γ̇j
∂q̇m

δqm dV

=
∂

∂q̇m

∫

B0

1

2
Λij Γ̇iΓ̇jδqm dV for

∂Γj
∂qm
=
∂Γ̇j
∂q̇m

So, if we define

D =
1

2

∫

B0

Λij Γ̇iΓ̇j dV (A.4)

we obtain
∫

B0

ΛijΓ̇iδΓj dV =
∂D

∂q̇m
δqm

.
= δD (A.5)

Next, we examine the variation of ψ. We assume that ψ is independent of the generalized
velocities q̇. Moreover, below we keep the boundary terms when integrating by parts

δψ = ρ0

∫

B0

( ∂Ψ

∂Ui,j
δUi,j +

∂Ψ

∂Γi
δΓi +

∂Ψ

∂Γi,j
δΓi,j
)

dV

=

∫

B0

(

−Sij,jδUi + ρ0
δΨ

δΓi
δΓi
)

dV +

∫

∂B0

(TiδUi −BijnjδΓi) dA =
∂ψ

∂qm
δqm

with Ti = Sijnj is the force per unit area applied at the boundary of B0, and Bij = −ρ0∂Ψ/∂Γi,j
is associated with the entropy flux (see Section 2.1). In addition, we define the generalized
force Qi as

Qi =

∫

∂B0

(

Tj
∂Uj
∂qi
−Bljnj

∂Γl
∂qi

)

dA+

∫

B0

ρ0rj
∂Uj
∂qi

dV

where r(X, t) is a body force (see Section 2.2), so that

R = Qiδqi
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Lastly, we look at the variation of the kinetic energy K . In Section 3, we calculated δK

−δK =

∫

B0

ρ0ÜiδUi dV =

∫

B0

ρ0Üi
∂Ui
∂qm

δqm dV

Since ∂Ui
∂qm
= ∂U̇i
∂q̇m
, we obtain

Üi
∂Ui
∂qm
=

d

dt

(

U̇i
∂U̇i
∂q̇m

)

− U̇i
∂U̇i
∂qm

Thus, we arrive at

−δK =

∫

B0

ρ0ÜiδUi dV =
{ d

dt

(∂K

∂q̇m

)

−
∂K

∂qm

}

δqm

Finally, by substituting the above three variations into variational principle (A.1) we obtain

δ

t2
∫

t1

(ψ −K +D) dt =

t2
∫

t1

[∂ψ

∂qi
+
d

dt

(∂K

∂q̇i

)

−
∂K

∂qi
+
∂D

∂q̇i

]

δqi dt =

t2
∫

t1

Qiδqi dt

Since the time interval [t1, t2] is arbitrary, we are left with

d

dt

(∂K

∂q̇i

)

−
∂K

∂qi
+
∂D

∂q̇i
+
∂ψ

∂qi
= Qi (A.6)

We can rewrite equation (A.6) in the form of Lagrange’s equations with dissipation by first
introducing the full potential energy of the system

V =

∫

B0

ρ0Ψ dV +

∫

B0

ρ0rjUj dV +

∫

∂B0

(TiUi −BijnjΓi) dA

and defining the Lagrangian L
.
= V −K

δL

δqi
−
d

dt

(∂L

∂q̇i

)

+
∂D

∂q̇i
= 0 (A.7)

This concludes the derivation.
We note that by substituting the expression for the variations of ψ,K and D into variational

principle (A.1), we obtain the full nonlinear system (2.23).
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